MARKSCHEME

May 2014

MATHEMATICS

Higher Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

\boldsymbol{M} Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
$\boldsymbol{A} \quad$ Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to Scoris instructions and the document "Mathematics HL: Guidance for e-marking May 2014". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by Scoris.

Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method ($e g$ substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

N marks

Award \boldsymbol{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an \boldsymbol{M} mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
$$

Award $A 1$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

SECTION A

1. METHOD 1

```
substituting
\(-5+12 \mathrm{i}+a(2+3 \mathrm{i})+b=0\)
equating real or imaginary parts (M1)
\(12+3 a=0 \Rightarrow a=-4 \quad\) A1
\(-5+2 a+b=0 \Rightarrow b=13 \quad\) A1
```


METHOD 2

```
other root is \(2-3 i\)
considering either the sum or product of roots or multiplying factors
\(4=-a\) (sum of roots) so \(a=-4\)
\(13=b\) (product of roots)
2. \(X: \mathrm{N}\left(100, \sigma^{2}\right)\)
\(\mathrm{P}(X<124)=0.68\)
(M1)(A1)
\(\frac{24}{\sigma}=0.4676 \ldots\) (M1)
\(\sigma=51.315 \ldots\)
variance \(=2630\) A1
[5 marks]
Notes: Accept use of \(\mathrm{P}(X<124.5)=0.68\) leading to variance \(=2744\).
3. the number of ways of allocating presents to the first child is \(\binom{7}{3}\left(\right.\) or \(\left.\binom{7}{2}\right)\) multiplying by \(\binom{4}{2}\left(\right.\) or \(\binom{5}{3}\) or \(\left.\binom{5}{2}\right)\)
(M1)(A1)

Note: Award M1 for multiplication of combinations.
\(\binom{7}{3}\binom{4}{2}=210\)
4.
\[
\begin{aligned}
& {\left[\begin{array}{c}
x+2 y-z=2 \\
2 x+y+z=1 \\
-x+4 y+a z=4
\end{array}\right.} \\
& \rightarrow\left[\begin{array}{c}
x+2 y-z=2 \\
-3 y+3 z=-3 \\
6 y+(a-1) z=6
\end{array}\right. \\
& \rightarrow\left[\begin{array}{c}
x+2 y-z=2 \\
-3 y+3 z=-3 \\
(a+5) z=0
\end{array}\right. \\
& \text { M1A1 } \\
& \text { (or equivalent) } \\
& \text { if not a unique solution then } a=-5
\end{aligned} \quad \text { A1 }
\]

Note: The first \(\boldsymbol{M 1}\) is for attempting to eliminate a variable, the first \(\boldsymbol{A 1}\) for obtaining two expression in just two variables (plus \(a\) ), and the second \(\boldsymbol{A 1}\) for obtaining an expression in just \(a\) and one other variable
(b) if \(a=-5\) there are an infinite number of solutions as last equation always true
5. (a) \(\frac{\pi}{2}(1.57), \frac{3 \pi}{2}(4.71)\)

A1A1
hence the coordinates are \(\left(\frac{\pi}{2}, \frac{\pi}{2}\right),\left(\frac{3 \pi}{2}, \frac{3 \pi}{2}\right)\)
A1
[3 marks]
(b) (i) \(\pi \int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}}\left(x^{2}-(x+2 \cos x)^{2}\right) \mathrm{d} x\)

A1A1A1

Note: Award \(\boldsymbol{A 1}\) for \(x^{2}-(x+2 \cos x)^{2}, \boldsymbol{A 1}\) for correct limits and \(\boldsymbol{A} \boldsymbol{1}\) for \(\pi\).
(ii) \(\quad 6 \pi^{2}(=59.2)\) A2

Notes: Do not award ft from (b)(i).
6. (a) METHOD 1
sketch showing where the lines cross or zeros of \(y=x(x+2)^{6}-x\)
\(x=0\)
\(x=-1\) and \(x=-3\)
the solution is \(-3<x<-1\) or \(x>0\)
Note: Do not award either final \(\boldsymbol{A 1}\) mark if strict inequalities are not given.

\section*{METHOD 2}
separating into two cases \(x>0\) and \(x<0\)
if \(x>0\) then \((x+2)^{6}>1 \Rightarrow\) always true
if \(x<0\) then \((x+2)^{6}<1 \Rightarrow-3<x<-1\)
so the solution is \(-3<x<-1\) or \(x>0\)
Note: Do not award either final \(\boldsymbol{A 1}\) mark if strict inequalities are not given.

\section*{METHOD 3}
\[
f(x)=x^{7}+12 x^{6}+60 x^{5}+160 x^{4}+240 x^{3}+192 x^{2}+64 x
\]
solutions to \(x^{7}+12 x^{6}+60 x^{5}+160 x^{4}+240 x^{3}+192 x^{2}+63 x=0\) are
\(x=0, x=-1\) and \(x=-3\)
so the solution is \(-3<x<-1\) or \(x>0\)
Note: Do not award either final \(\boldsymbol{A 1}\) mark if strict inequalities are not given.

\section*{METHOD 4}
\[
\begin{equation*}
f(x)=x \text { when } x(x+2)^{6}=x \tag{A1}
\end{equation*}
\]
either \(x=0\) or \((x+2)^{6}=1\)
if \((x+2)^{6}=1\) then \(x+2= \pm 1\) so \(x=-1\) or \(x=-3\)
the solution is \(-3<x<-1\) or \(x>0\)
A1A1
Note: Do not award either final \(\boldsymbol{A 1}\) mark if strict inequalities are not given.

\section*{Question 6 continued}
(b) METHOD 1 (by substitution)
\[
\text { substituting } u=x+2
\]
\(\mathrm{d} u=\mathrm{d} x\)
\(\int(u-2) u^{6} \mathrm{~d} u\)
M1A1
\(=\frac{1}{8} u^{8}-\frac{2}{7} u^{7}(+c)\)
\(=\frac{1}{8}(x+2)^{8}-\frac{2}{7}(x+2)^{7}(+c)\)
METHOD 2 (by parts)
\[
u=x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=1, \frac{\mathrm{~d} v}{\mathrm{~d} x}=(x+2)^{6} \Rightarrow v=\frac{1}{7}(x+2)^{7}
\]
\(\int x(x+2)^{6} \mathrm{~d} x=\frac{1}{7} x(x+2)^{7}-\frac{1}{7} \int(x+2)^{7} \mathrm{~d} x\)
\(=\frac{1}{7} x(x+2)^{7}-\frac{1}{56}(x+2)^{8}(+c)\)

\section*{METHOD 3 (by expansion)}
\[
\begin{array}{ll}
\int f(x) \mathrm{d} x=\int\left(x^{7}+12 x^{6}+60 x^{5}+160 x^{4}+240 x^{3}+192 x^{2}+64 x\right) \mathrm{d} x & \text { M1A1 } \\
=\frac{1}{8} x^{8}+\frac{12}{7} x^{7}+10 x^{6}+32 x^{5}+60 x^{4}+64 x^{3}+32 x^{2}(+c) \text { are } & \text { M1A2 }
\end{array}
\]

Note: Award M1A1 if at least four terms are correct.
7. if \(n=0\)
\(7^{3}+2=345\) which is divisible by 5 , hence true for \(n=0\)
Note: Award \(\boldsymbol{A 0}\) for using \(n=1\) but do not penalize further in question.
assume true for \(n=k\)
M1
Note: Only award the \(\boldsymbol{M 1}\) if truth is assumed.
so \(7^{8 k+3}+2=5 p, p \in \bullet \quad\) A1
if \(n=k+1\)
\(7^{8(k+1)+3}+2\) M1
\(=7^{8} 7^{8 k+3}+2 \quad\) M1
\(=7^{8}(5 p-2)+2 \quad\) A1
\(=7^{8} .5 p-2.7^{8}+2\)
\(=7^{8} .5 p-11529600\)
\(=5\left(7^{8} p-2305920\right)\)
hence if true for \(n=k\), then also true for \(n=k+1\). Since true for \(n=0\), then true for all \(n \in\) •

Note: Only award the \(\boldsymbol{R} \mathbf{1}\) if the first two \(\boldsymbol{M} 1\) s have been awarded.
8. (a) \(\left(A\binom{6}{5} 2^{5} B+3\binom{6}{4} 2^{4} B^{2}\right) x^{5}\) \(=\left(192 A B+720 B^{2}\right) x^{5}\)

M1A1A1
A1
[4 marks]
(b) METHOD 1
\(x=\frac{1}{6}, A=\frac{3}{6}\left(=\frac{1}{2}\right), B=\frac{4}{6}\left(=\frac{2}{3}\right)\)
A1A1A1
probability is \(\frac{4}{81}(=0.0494)\)
A1

\section*{METHOD 2}
\[
\begin{aligned}
& \mathrm{P}(5 \text { eaten })=\mathrm{P}(\mathrm{M} \text { eats } 1) \mathrm{P}(\mathrm{~N} \text { eats } 4)+\mathrm{P}(\mathrm{M} \text { eats } 0) \mathrm{P}(\mathrm{~N} \text { eats } 5) \\
& =\frac{1}{2}\binom{6}{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{2}+\frac{1}{2}\binom{6}{5}\left(\frac{1}{3}\right)^{5}\left(\frac{2}{3}\right) \\
& =\frac{4}{81}(=0.0494)
\end{aligned}
\]
9. (a) mean for week is 40.88
\(\mathrm{P}(S>40)=1-\mathrm{P}(S \leq 40)=0.513\)
(b) probability there were more than 10 on Monday AND more than 40 over the week
possibilities for the numerator are:
there were more than 40 birds on the power line on Monday R1
11 on Monday and more than 29 over the course of the next 6 days R1
12 on Monday and more than 28 over the course of the next 6 days \(\ldots\) until 40 on Monday and more than 0 over the course of the next 6 days R1
hence if \(X\) is the number on the power line on Monday and \(Y\), the number on the power line Tuesday - Sunday then the numerator is
\(\mathrm{P}(X>40)+\mathrm{P}(X=11) \times \mathrm{P}(Y>29)+\mathrm{P}(X=12) \times \mathrm{P}(Y>28)+\ldots\)
\(+\mathrm{P}(X=40) \times \mathrm{P}(Y>0)\)
\(=\mathrm{P}(X>40)+\sum_{r=11}^{40} \mathrm{P}(X=r) \mathrm{P}(Y>40-r)\)
hence solution is \(\frac{\mathrm{P}(X>40)+\sum_{r=11}^{40} \mathrm{P}(X=r) \mathrm{P}(Y>40-r)}{\mathrm{P}(X>10)} \quad \boldsymbol{A G}\)

\section*{SECTION B}
10. (a) \(x \rightarrow-\infty \Rightarrow y \rightarrow-\frac{1}{2}\) so \(y=-\frac{1}{2}\) is an asymptote
(M1)A1
\(\mathrm{e}^{x}-2=0 \Rightarrow x=\ln 2\) so \(x=\ln 2(=0.693)\) is an asymptote (M1)A1
[4 marks]
(b) (i) \(f^{\prime}(x)=\frac{2\left(\mathrm{e}^{x}-2\right) \mathrm{e}^{2 x}-\left(\mathrm{e}^{2 x}+1\right) \mathrm{e}^{x}}{\left(\mathrm{e}^{x}-2\right)^{2}}\)

M1A1
\(=\frac{\mathrm{e}^{3 x}-4 \mathrm{e}^{2 x}-\mathrm{e}^{x}}{\left(\mathrm{e}^{x}-2\right)^{2}}\)
(ii) \(f^{\prime}(x)=0\) when \(\mathrm{e}^{3 x}-4 \mathrm{e}^{2 x}-\mathrm{e}^{x}=0\)
\(\mathrm{e}^{x}\left(\mathrm{e}^{2 x}-4 \mathrm{e}^{x}-1\right)=0\)
\(\mathrm{e}^{x}=0, \mathrm{e}^{x}=-0.236, \mathrm{e}^{x}=4.24\left(\right.\) or \(\left.e^{x}=2 \pm \sqrt{5}\right)\)
Note: Award \(\boldsymbol{A 1}\) for zero, \(\boldsymbol{A 1}\) for other two solutions.
Accept any answers which show a zero, a negative and a positive.
as \(\mathrm{e}^{x}>0\) exactly one solution
R1
Note: Do not award marks for purely graphical solution.
(iii) \((1.44,8.47)\)
(c) \(\quad f^{\prime}(0)=-4\)
so gradient of normal is \(\frac{1}{4}\)
\(f(0)=-2\)
so equation of \(L_{1}\) is \(y=\frac{1}{4} x-2\)

Question 10 continued


Total [21 marks]
11. (a) \(\int_{2}^{3}(a x+b) \mathrm{d} x(=1)\)

M1A1
\(\left[\frac{1}{2} a x^{2}+b x\right]_{2}^{3}(=1)\)
\(\frac{5}{2} a+b=1\)
M1
\(5 a+2 b=2\)
(b) (i) \(\quad \int_{2}^{3}\left(a x^{2}+b x\right) \mathrm{d} x(=\mu)\)

M1A1
A1

A1
M1
eliminating \(b\) A1
\(\frac{19}{3} a+\frac{5}{2}\left(1-\frac{5}{2} a\right)=\mu\)
\(\frac{1}{12} a+\frac{5}{2}=\mu\)
\(a=12 \mu-30\)
\(A G\)
Note: Elimination of \(b\) could be at different stages.
(ii) \(\quad b=1-\frac{5}{2}(12 \mu-30)\)
\(=76-30 \mu\)
A1
Note: This solution may be seen in part (i).
[7 marks]
(c)
\[
\begin{aligned}
& \text { (i) } \begin{array}{l}
\int_{2}^{2.3}(a x+b) \mathrm{d} x(=0.5) \\
{\left[\frac{1}{2} a x^{2}+b x\right]_{2}^{2.3}(=0.5)} \\
0.645 a+0.3 b(=0.5) \\
0.645(12 \mu-30)+0.3(76-30 \mu)=0.5 \\
\mu=2.34\left(=\frac{295}{126}\right)
\end{array}
\end{aligned}
\]
continued ...

Question 11 continued
(ii) \(\mathrm{E}\left(X^{2}\right)=\int_{2}^{3} x^{2}(a x+b) \mathrm{d} x\)
\(a=12 \mu-30=-\frac{40}{21}, b=76-30 \mu=\frac{121}{21}\)
\(\mathrm{E}\left(X^{2}\right)=\int_{2}^{3} x^{2}\left(-\frac{40}{21} x+\frac{121}{21}\right) \mathrm{d} x=5.539 \ldots\left(=\frac{349}{63}\right)\)
\(\operatorname{Var}(X)=5.539 \mathrm{~K}-(2.341 \mathrm{~K})^{2}=0.05813 \ldots\)
(M1)
\(\sigma=0.241\)

Total [21 marks]
12. (a) (i) \(f(0)=-1\)
(M1) A1
(ii) \((f \circ g)(0)=f(4)=3\)

A1
(iii)

(M1) A1

Note: Award M1 for evidence that the lower part of the graph has been reflected and \(\boldsymbol{A 1}\) correct shape with \(y\)-intercept below 4 .
(b) (i)

(M1) A1
Note: Award M1 for any translation of \(y=|x|\).
(ii) \(\pm 1\)

Note: Do not award the \(\boldsymbol{A 1}\) if coordinates given, but do not penalise in the rest of the question

\section*{Question 12 continued}
(c) (i)

(M1)A1
Note: Award M1 for evidence that lower part of (b) has been reflected in the \(x\)-axis and translated.
(ii) \(0, \pm 2 \quad\) A1
(d) (i) \(\pm 1, \pm 3\)

A1
(ii) \(0, \pm 2, \pm 4 \quad \boldsymbol{A 1}\)
(iii) \(0, \pm 2, \pm 4, \pm 6, \pm 8\)
(e) (i) \((1,3),(2,5), \ldots\)
\(N=2 n+1\)
(ii) Using the formula of the sum of an arithmetic series

\section*{EITHER}
\[
\begin{aligned}
& 4(1+2+3+\ldots+n)=\frac{4}{2} n(n+1) \\
& =2 n(n+1)
\end{aligned}
\]

\section*{OR}
\(2(2+4+6+\ldots+2 n)=\frac{2}{2} n(2 n+2)\)
\(=2 n(n+1)\)```

